The Potential of U.S. Forest Soils to Sequester Carbon and Mitigate the Greenhouse Effect  book cover
SAVE
$14.99
1st Edition

The Potential of U.S. Forest Soils to Sequester Carbon and Mitigate the Greenhouse Effect





ISBN 9780367454760
Published December 2, 2019 by CRC Press
448 Pages

 
SAVE ~ $14.99
was $74.95
USD $59.96

Prices & shipping based on shipping country


Preview

Book Description

Much attention has been given to above ground biomass and its potential as a carbon sink, but in a mature forest ecosystem 40 to 60 percent of the stored carbon is below ground. As increasing numbers of forests are managed in a wide diversity of climates and soils, the importance of forest soils as a potential carbon sink grows.

The Potential of U.S. Forest Soils to Sequester Carbon and Mitigate the Greenhouse Effect provides researchers and policy makers with an understanding of soil processes and their relation to carbon dynamics, as well as strategies to monitor and techniques to measure forest soil carbon. It covers the effects of management on soils in a wide range of forest ecosystems together with policy options that are effective and benefit both the forest community and the over all environment. This valuable reference provides forest managers, urban planners, land owners, policy makers, and the general public with guidance that will allow for a holistic approach to land management, environmental quality, and improved forest productivity.

Table of Contents

The Extent, General Characteristics, and Carbon Dynamics of U.S. Forest Soils. Soils Processes and Carbon Dynamics. Management Impacts on US Forest Soils. Specific Forest Ecosystems. Synthesis and Policy Implications.

...
View More

Editor(s)

Biography

John M. Kimble, Ph.D., is a research soil scientist at the USDA Natural Resources Conservation Service, National Soil Survey Center, in Lincoln, Nebraska, where he been for the last 21 years. Previously he was a field soil scientist in Wyoming for 3 years and an area soil scientist in California for three years. He has received the International Soil Science Award from the Soil Science Society of America. While in Lincoln, he worked on a U.S. Agency for International Development Project for 11 years, helping developing countries with their soil resources, and he remains active in international activities. For the last ten years he has focused more on global climate change and the role soils can play in this area. His scientific publications deal with topics related to soil classification, soil management, global climate change, and sustainable development. He has worked in many different ecoregions, from the Antarctic to the Arctic and all points in between. With the other editors of this book, he has led the efforts to increase the overall knowledge of soils and their relationship to global climate change. He has collaborated with Dr. Rattan Lal, Dr. Ronald Follett, and others to produce 11 books related to the role of soils in global climate change.

Linda S. Heath, Ph.D. is a research forester and project leader with the USDA Forest Service, Northeastern Research Station, in Durham, New Hampshire. For the past 10 years, she has focused on modeling carbon storage and flux of forest ecosystems of the United States, including carbon in harvested wood, and uncertainties of the system. Her estimates of forest carbon are used by the U.S. government in reporting forest carbon sinks, including forest-soil carbon, to the United Nations Framework Convention on Climate Change, and by the U.S. Environmental Protection Agency in its annual inventory of U.S. greenhouse-gas emissions and sinks. As project leader, she supervises scientists conducting research in quanti